Meander Designer: Automatically Generating Meander Channel Designs

Author:

Grimmer Andreas,Frank Philipp,Ebner Philipp,Häfner Sebastian,Richter Andreas,Wille RobertORCID

Abstract

Microfluidics continues to bring innovation to the life sciences. It stimulates progress by enabling new ways of research in biology, chemistry, and biotechnology. However, when designing a microfluidic device, designers have to conduct many tasks by hand—resulting in labor-intensive processes. In particular, when drawing the design of the device, designers have to handle re-occurring entities. Meander channels are one example, which are frequently used in different platforms but always have to fit the respective application and design rules. This work presents an online tool which is capable of automatically generating user-defined, two-dimensional designs of fluidic meander channels facilitating fluidic hydrodynamic resistances. The tool implements specific design rules as it considers the user’s needs and fabrication requirements. The compliance of the meanders generated by the proposed tool is confirmed by fabricating the generated designs and comparing whether the resulting devices indeed realize the desired specification. To this end, two case studies are considered: first, the realization of dedicated fluidic resistances and, second, the realization of dedicated mixing ratios of fluids. The results demonstrate the versatility of the tool regarding application and technology. Overall, the freely accessible tool with its flexibility and simplicity renders manual drawing of meanders obsolete and, hence, allows for a faster, more straightforward design process.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Design Automation for Organs-on-Chip;2024 Design, Automation & Test in Europe Conference & Exhibition (DATE);2024-03-25

2. Analysis of Liquid Morphologies in Curved Open Microchannels;2023 IEEE SENSORS;2023-10-29

3. CFD for Microfluidics: A Workflow for Setting Up the Simulation of Microfluidic Devices;2023 26th Euromicro Conference on Digital System Design (DSD);2023-09-06

4. Channel Routing for Microfluidic Devices: A Comprehensive and Accessible Design Tool;IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems;2023-02

5. MMFT Droplet Simulator: Efficient Simulation of Droplet-based Microfluidic Devices;Software Impacts;2022-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3