Abstract
Neutrophils are the most abundant circulating leukocytes in humans. Neutrophil infiltration into tumor tissues has long been observed but its roles have been ignored due to the presumed short life cycle and metabolic incompetence of neutrophils. Recent advances in neutrophil biology research have revealed that neutrophils have a longer life cycle with a potential to express various bioactive molecules. Clinical studies have simultaneously unraveled an increase in the neutrophil–lymphocyte ratio (NLR), a ratio of absolute neutrophil to absolute lymphocyte numbers in cancer patient peripheral blood and an association of higher NLR with more advanced or aggressive disease. As a consequence, tumor-associated neutrophils (TANs) have emerged as important players in tumor microenvironment. The elucidation of the roles of TANs, however, has been hampered by their multitude of plasticity in terms of phenotypes and functionality. Difficulties are further enhanced by the presence of a related cell population—polymorphonuclear leukocyte (PMN)-myeloid-derived suppressor cells (MDSCs)—and various dissimilar aspects of neutrophil biology between humans and mice. Here, we discuss TAN biology in various tumorigenesis processes, and particularly focus on the context-dependent functional heterogeneity of TANs.
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
63 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献