A Simple and Effective Flow Cytometry-Based Method for Identification and Quantification of Tissue Infiltrated Leukocyte Subpopulations in a Mouse Model of Peripheral Arterial Disease

Author:

Kumaraswami Konda,Salei Natallia,Beck SebastianORCID,Rambichler Stephan,Kluever Anna-Kristina,Lasch Manuel,Richter LisaORCID,Schraml Barbara U.ORCID,Deindl ElisabethORCID

Abstract

Arteriogenesis, the growth of a natural bypass from pre-existing arteriolar collaterals, is an endogenous mechanism to compensate for the loss of an artery. Mechanistically, this process relies on a locally and temporally restricted perivascular infiltration of leukocyte subpopulations, which mediate arteriogenesis by supplying growth factors and cytokines. Currently, the state-of-the-art method to identify and quantify these leukocyte subpopulations in mouse models is immunohistology. However, this is a time consuming procedure. Here, we aimed to develop an optimized protocol to identify and quantify leukocyte subpopulations by means of flow cytometry in adductor muscles containing growing collateral arteries. For that purpose, adductor muscles of murine hindlimbs were isolated at day one and three after induction of arteriogenesis, enzymatically digested, and infiltrated leukocyte subpopulations were identified and quantified by flow cytometry, as exemplary shown for neutrophils and macrophages (defined as CD45+/CD11b+/Ly6G+ and CD45+/CD11b+/F4/80+ cells, respectively). In summary, we show that flow cytometry is a suitable method to identify and quantify leukocyte subpopulations in muscle tissue, and provide a detailed protocol. Flow cytometry constitutes a timesaving tool compared to histology, which might be used in addition for precise localization of leukocytes in tissue samples.

Funder

Deutsche Forschungsgemeinschaft

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3