Abstract
It is well-established that aminothiols, to which cysteine (Cys) belongs, are highly reactive towards aldehydes in an aqueous environment, forming substituted thiazolidine carboxylic acids. This report provides evidence that formation of the product containing a thiazolidine ring through non-enzymatic condensation of Cys and an active form of vitamin B6 pyridoxal 5′-phosphate (PLP) occurs in vivo in humans. To prove this point, a new method, based on a gas chromatography coupled with mass spectrometry (GC-MS), has been designed to identify and quantify Cys and PLP adduct, 2-(3-hydroxy-5-phosphonooxymethyl-2-methyl-4-pyridyl)-1,3-thiazolidine-4-carboxylic acid (HPPTCA) in human plasma. The GC-MS assay relies on sample deproteinization by ultrafiltration over cut-off membranes and preconcentration by drying under vacuum, followed by treatment of the residue with derivatization mixture containing anhydrous pyridine, N-trimethylsilyl-N-methyl trifluoroacetamide (MSTFA) and trimethylchlorosilane (TMCS). The method quantifies HPPTCA in a linear range from 1 to 20 µmol L−1, where the lowest standard on the calibration curve refers to the limit of quantification (LOQ). The validity of the method was demonstrated. Furthermore, the method was successfully applied to plasma samples donated by apparently healthy volunteers and breast cancer patients. The GC-MS assay provides a new tool that will hopefully facilitate studies on the role of HPPTCA in living systems.
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献