Robust Sampling of Defective Pathways in Alzheimer’s Disease. Implications in Drug Repositioning

Author:

Fernández-Martínez Juan LuisORCID,Álvarez-Machancoses ÓscarORCID,deAndrés-Galiana Enrique J.ORCID,Bea Guillermina,Kloczkowski Andrzej

Abstract

We present the analysis of the defective genetic pathways of the Late-Onset Alzheimer’s Disease (LOAD) compared to the Mild Cognitive Impairment (MCI) and Healthy Controls (HC) using different sampling methodologies. These algorithms sample the uncertainty space that is intrinsic to any kind of highly underdetermined phenotype prediction problem, by looking for the minimum-scale signatures (header genes) corresponding to different random holdouts. The biological pathways can be identified performing posterior analysis of these signatures established via cross-validation holdouts and plugging the set of most frequently sampled genes into different ontological platforms. That way, the effect of helper genes, whose presence might be due to the high degree of under determinacy of these experiments and data noise, is reduced. Our results suggest that common pathways for Alzheimer’s disease and MCI are mainly related to viral mRNA translation, influenza viral RNA transcription and replication, gene expression, mitochondrial translation, and metabolism, with these results being highly consistent regardless of the comparative methods. The cross-validated predictive accuracies achieved for the LOAD and MCI discriminations were 84% and 81.5%, respectively. The difference between LOAD and MCI could not be clearly established (74% accuracy). The most discriminatory genes of the LOAD-MCI discrimination are associated with proteasome mediated degradation and G-protein signaling. Based on these findings we have also performed drug repositioning using Dr. Insight package, proposing the following different typologies of drugs: isoquinoline alkaloids, antitumor antibiotics, phosphoinositide 3-kinase PI3K, autophagy inhibitors, antagonists of the muscarinic acetylcholine receptor and histone deacetylase inhibitors. We believe that the potential clinical relevance of these findings should be further investigated and confirmed with other independent studies.

Funder

National Science Foundation

National Institutes of Health

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3