Research on the Deployment of Joint Dedicated Lanes for CAVs and Buses

Author:

Luo QingyuORCID,Du Rui,Jia Hongfei,Yang Lili

Abstract

CAVs (Connected Autonomous Vehicles) can be effective in improving the efficiency of transportation, but heterogeneous multi-modal traffic flows may hinder this efficiency. This paper addresses the issue of heterogeneous traffic flows affecting the efficiency of transportation when CAVs enter the market and proposes a joint dedicated lane for CAVs and buses. In the bi-level program model for the joint dedicated lane, the lower-level is aimed at the multi-modal traffic assignment problem, while the upper-level is aimed at system optimality. For the lower-level, the paper examines the characteristics of various traffic flows in a mixed traffic flow, investigates the impact of CAV mixing on the road link’s capacity, calculates the travel time of various traffic modes accordingly, and generates a generalized travel cost function for each mode, which is solved using the diagonalized weighted successive averaging method (MSWA) algorithm. The upper-level issue considers the continuity of dedicated and non-dedicated road segments, and the goal is to reduce the overall cost for all travelers by utilizing the dedicated road deployment scheme as the decision variable, which is addressed using a genetic algorithm. Finally, numerical examples and sensitivity analyses are designed accordingly. The numerical example demonstrates that the joint dedicated lane not only lowers the overall cost of the system, but also enhances the efficiency of CAV and bus travel, optimizing the road network and promoting bus and CAV travel modes. The sensitivity analysis shows that in order to set up a joint dedicated lane, the frequency of bus departures and the penetration of CAVs are conditions that must be considered, and that the benefits of a joint dedicated lane can only be fully realized if the frequency of bus departures and the penetration of CAVs are appropriate.

Funder

National Natural Science Foundation of China

Humanities and Social Science Fund of Ministry of Education of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3