Comparative Study on the Isothermal Reduction Kinetics of Iron Oxide Pellet Fines with Carbon-Bearing Materials

Author:

Hammam Abourehab,Nasr Mahmoud I.,El-Sadek Mohamed H.,Omran MamdouhORCID,Ahmed Abdallah,Li YingORCID,Xiong Yuandong,Yu Yaowei

Abstract

The isothermal reduction of iron oxide pellet fines–carbon composites was investigated at temperatures of 900–1100 °C. The reduction reactions were monitored using the thermogravimetric (TG) technique. Alternatively, a Quadruple Mass Spectrometer (QMS) analyzed the CO and CO2 gases evolved from the reduction reactions. The effect of temperature, carbon source, and reaction time on the rate of reduction was extensively studied. The phase composition and the morphological structure of the reduced composites were identified by X-ray diffraction (XRD) and a scanning electron microscope (SEM). The results showed that the reduction rate was affected by the temperature and source of carbon. For all composite compacts, the reduction rate, as well as the conversion degree (α) increased with increasing temperature. Under the same temperature, the conversion degree and the reduction rate of composites were greater according to using the following carbon sources order: Activated charcoal > charcoal > coal. The reduction of the different composites was shown to occur stepwise from hematite to metallic iron. The reduction, either by activated charcoal or charcoal, is characterized by two behaviors. During the initial stage, the chemical reaction model (1 − α)−2 controls the reduction process whereas the final stage is controlled by gas diffusion [1 − (1 − α)1/2]2. In the case of reduction with coal, the reduction mechanism is regulated by the Avrami–Erofeev model [−ln (1−α)2] at the initial stage. The rate-controlling mechanism is the 3-D diffusion model (Z-L-T), namely [(1−α)−1/3−1]2 at the latter stage. The results indicated that using biomass carbon sources is favorable to replace fossil-origin carbon-bearing materials for the reduction of iron oxide pellet fines.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3