Development of Digital Twin for Intelligent Maintenance of Civil Infrastructure

Author:

Mahmoodian Mojtaba,Shahrivar FarhamORCID,Setunge Sujeeva,Mazaheri SamORCID

Abstract

Over the life cycle of a civil infrastructure (a bridge as an example), 0.4–2% of the construction cost is spent annually on its maintenance. Utilising new technologies including the internet of things (IoT) and digital twin (DT) can significantly reduce the infrastructure maintenance costs. An infrastructure DT involves its digital replica and must include data on geometric, geospatial reference, performance, attributes (material, environment etc.) and management. Then, the acquired data need to be analysed and visualised to inform maintenance decision making. To develop this DT, the first step is the study of the infrastructure life cycle to design DT architecture. Using data semantics, this paper presents a novel DT architecture design for an intelligent infrastructure maintenance system. Semantic modelling is used as a powerful tool to structure and organize data. This approach provides an industry context through capturing knowledge about infrastructures in the structure of semantic model graph. Using new technologies, DT approach derives and presents meaningful data on infrastructure real-time performance and maintenance requirements, and in a more expressible and interpretable manner. The data semantic model will guide when and what data to collect for feeding into the infrastructure DT. The proposed DT concept was applied on one of the conveyors of Dalrymple Bay Coal Terminal in Queensland Australia to monitor the structural performance in real-time, which enables predictive maintenance to avoid breakdowns and disruptions in operation and consequential financial impacts.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3