Effects of Hydraulic Gradient and Clay Type on Permeability of Clay Mineral Materials

Author:

Kohno MasanoriORCID

Abstract

Considering the relevance of clay mineral-bearing geomaterials in landslide/mass movement hazard assessment, various engineering projects for resource development, and stability evaluation of underground space utilization, it is important to understand the permeability of these clay mineral-based geomaterials. However, only a few quantitative data have been reported to date regarding the effects of the clay mineral type and hydraulic gradient on the permeability of clay mineral materials. This study was conducted to investigate the permeability of clay mineral materials based on the clay mineral type, under different hydraulic gradient conditions, through a constant-pressure permeability test. Comparative tests have revealed that the difference in the types of clay mineral influences the swelling pressure and hydraulic conductivity. In addition, it has been found that the difference in water pressure (hydraulic gradient) affects the hydraulic conductivity of clay mineral materials. The hydraulic conductivity has been found to be closely associated with the specific surface area of the clay mineral material. Furthermore, the hydraulic conductivity value measured is almost consistent with the value calculated theoretically using the Kozeny–Carman equation. Moreover, the hydraulic conductivity is also found to be closely associated with the hydrogen energy, calculated from the consistency index of clay. This result suggests that the hydraulic conductivity of clay mineral materials can be estimated based on the specific surface area and void ratio, or consistency index of clay.

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

Reference63 articles.

1. Introduction to Clay Minerals: Chemistry, Origins, Uses and Environmental Significance;Velde,1992

2. Handbook of Clays and Clay Minerals,2009

3. Developments in Clay Science—Volume 5A, Handbook of Clay Science,2013

4. Physical properties of smectite bearing soft rocks (Part 2): Texture and swelling pressure;Ishida;J. Clay Sci. Soc. Jpn.,1994

5. Relationship between cylinder (longitudinal) point load strength and uniaxial compression strength for smectite-bearing fine tuffs in a soft and semi-hard rock boundary area: Example of the Upper Miocene Ikutawara Formation from the Ikutahara-Minami landslide area;Kohno;J. Jpn. Landslide Soc.,2010

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3