Geochemical Controls on Uranium Release from Neutral-pH Rock Drainage Produced by Weathering of Granite, Gneiss, and Schist

Author:

Skierszkan Elliott K.ORCID,Dockrey John W.,Mayer K. Ulrich,Bondici Viorica F.,McBeth Joyce M.ORCID,Beckie Roger D.ORCID

Abstract

We investigated geochemical processes controlling uranium release in neutral-pH (pH ≥ 6) rock drainage (NRD) at a prospective gold deposit hosted in granite, schist, and gneiss. Although uranium is not an economic target at this deposit, it is present in the host rock at a median abundance of 3.7 µg/g, i.e., above the average uranium content of the Earth’s crust. Field bin and column waste-rock weathering experiments using gneiss and schist mine waste rock produced circumneutral-pH (7.6 to 8.4) and high-alkalinity (41 to 499 mg/L as CaCO3) drainage, while granite produced drainage with lower pH (pH 4.7 to >8) and lower alkalinity (<10 to 210 mg/L as CaCO3). In all instances, U release was associated with calcium release and formation of weakly sorbing calcium-carbonato-uranyl aqueous complexes. This process accounted for the higher release of uranium from carbonate-bearing gneiss and schist than from granite despite the latter’s higher solid-phase uranium content. In addition, unweathered carbonate-bearing rocks having a higher sulfide-mineral content released more uranium than their oxidized counterparts because sulfuric acid produced during sulfide-mineral oxidation promoted dissolution of carbonate minerals, release of calcium, and formation of calcium-carbonato-uranyl aqueous complexes. Substantial uranium attenuation occurred during a sequencing experiment involving application of uranium-rich gneiss drainage into columns containing Fe-oxide rich schist. Geochemical modeling indicated that uranium attenuation in the sequencing experiment could be explained through surface complexation and that this process is highly sensitive to dissolved calcium concentrations and pCO2 under NRD conditions.

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

Reference71 articles.

1. Uranium

2. Health Canada Uranium in Drinking Water—Document for Public Consultationhttps://www.canada.ca/en/health-canada/programs/consultation-uranium-drinking-water/document.html

3. Canadian Council of Ministers of the Environment Canadian Water Quality Guidelines for the Protection of Aquatic Life—Uraniumhttp://st-ts.ccme.ca/en/index.html?lang=en&factsheet=225

4. Geochemical Control on Uranium(IV) Mobility in a Mining-Impacted Wetland

5. Uranium occurrence and behaviour in British groundwater;Smedley,2006

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3