Late Ordovician Mafic Magmatic Event, Southeast Siberia: Tectonic Implications, LIP Interpretation, and Potential Link with a Mass Extinction

Author:

Khudoley Andrey K.,Prokopiev Andrei V.,Chamberlain Kevin R.,Savelev Aleksandr D.ORCID,Ernst Richard E.,Malyshev Sergey V.ORCID,Moskalenko Artem N.,Lebedeva Olga Yu.

Abstract

A geochronological, isotopic, and geochemical study of the Suordakh event of mafic magmatic intrusions on the southeast Siberian margin was undertaken. U-Pb baddeleyite dating of a mafic sill intruding lower Cambrian rocks, yielded a 458 ± 13 Ma emplacement age. The chemical composition and stratigraphic setting of this dated sill differed from that previously attributed to the Suordakh event, implying that additional intrusions, previously mapped as Devonian, potentially belonged to the Suordakh event. No correlation between L.O.I. and concentration of highly mobile major and trace elements was documented, showing small or no influence of hydrothermal alteration on the chemical composition of the intrusions. A new tectonic reconstruction located an island arc and active margin relatively close to the study area. However, all samples had chemical compositions close to that of OIB and did not display Ta-Nb and Ti-negative anomalies, nor other features typical for subduction-related magmatism. The major and trace element distribution was most characteristic of within-plate basalts with the mantle source composition being transitional from spinel to garnet lherzolite. Combining four U-Pb baddeleyite dates of mafic sills and dykes from southeast Siberia, the age of the Suordakh event was estimated at 454 ± 10 Ma. The area of the Suordakh event was at least 35,000–40,000 km2 (an estimate including sills previously interpreted as Devonian), and could be increased with additional dating in Southeastern Siberia. Similar ages for within-plate intrusions were reported from South Korea, West Mongolia, South Argentina, North Iran and Northwest Canada, and these ca. 450 Ma ages were collectively close in timing with the latest Ordovician (Hirnantian) mass extinction. More high-precision dating is necessary to fully test a link between the Suordakh event (and the other age-correlative events) and the end-Ordovician mass extinction.

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

Reference82 articles.

1. Tectonics of the Sette–Daban Horst Anticlinorium;Yan-Zhin-Shin,1983

2. Continental Margins and Island Arcs of Mesozoides of Northeastern Asia;Parfenov,1984

3. Sedimentary cover of the Siberian platform and adjacent fold and thrust belts;Prokopiev,2001

4. Influence of syn-sedimentary faults on orogenic structure: examples from the Neoproterozoic–Mesozoic east Siberian passive margin

5. State Geological Map of the Russian Federation. Scale 1:1,000,000,1999

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3