Abstract
Starch-based flocculants have been emerged as a promising alternative to conventional synthetic flocculants in wastewater treatment, especially for the treatment of oil sand tailings, as they are low cost, safe, biodegradable, fairly shear-stable, readily available from reproducible agricultural resources, and do not result in secondary pollution. In this paper, three types of polymer-grafted starches (St-g-Polymer) with different charge properties were synthesized and their molecular structures were controlled by atom transfer radical polymerization (ATRP). The correlations between the charge properties of starch-based flocculants, external environmental parameters, and flocculation performance were systematically investigated by conducting jar tests under various environmental conditions. It was found that the charge properties of the branch chain had a significant impact on flocculation performance. The cationic St-g-Polymer demonstrated the best performance due to the grafting of the cationic monomer to the starch backbone which improved the solubility of the copolymer and aided in the removal of small/water-soluble particles. The results obtained could assist in guiding the selection and design of suitable biodegradable flocculants when treating targeted wastewater.
Subject
Geology,Geotechnical Engineering and Engineering Geology
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献