Geochemical and Geochronological Constraints on the Genesis of Ion-Adsorption-Type REE Mineralization in the Lincang Pluton, SW China

Author:

Lu Lei,Liu Yan,Liu Huichuan,Zhao Zhi,Wang Chenghui,Xu Xiaochun

Abstract

Granites are assumed to be the main source of heavy rare-earth elements (HREEs), which have important applications in modern society. However, the geochemical and petrographic characteristics of such granites need to be further constrained, especially as most granitic HREE deposits have undergone heavy weathering. The LC batholith comprises both fresh granite and ion-adsorption-type HREE deposits, and contains four main iRee (ion-adsorption-type REE) deposits: the Quannei (QN), Shangyun (SY), Mengwang (MW), and Menghai (MH) deposits, which provide an opportunity to elucidate these characteristics The four deposits exhibit light REE (LREE) enrichment, and the QN deposit is also enriched in HREEs. The QN and MH deposits were chosen for study of their petrology, mineralogy, geochemistry, and geochronology to improve our understanding of the formation of iRee deposits. The host rock of the QN and MH deposits is granite that includes REE accessory minerals, with monazite, xenotime, and allanite occurring as euhedral inclusions in feldspar and biotite, and thorite, fluorite(–Y), and REE fluorcarbonate occurring as anhedral filling in cavities in quartz and feldspar. Zircon U–Pb dating analysis of the QN (217.8 ± 1.7 Ma, MSWD = 1.06; and 220.3 ± 1.2 Ma, MSWD = 0.71) and MH (232.2 ± 1.7 Ma, MSWD = 0.58) granites indicates they formed in Late Triassic, with this being the upper limit of the REE-mineral formation age. The host rock of the QN and MH iRee deposits is similar to most LC granites, with high A/CNK ratios (>1.1) and strongly peraluminous characteristics similar to S-type granites. The LC granites (including the QN and MH granites) have strongly fractionated REE patterns (LREE/HREE = 1.89–11.97), negative Eu anomalies (Eu/Eu* = 0.06–0.25), and are depleted in Nb, Zr, Hf, P, Ba, and Sr. They have high 87Sr/86Sr ratios (0.710194–0.751763) and low 143Nd/144Nd ratios (0.511709–0.511975), with initial Sr and Nd isotopic compositions of (87Sr/86Sr)i = 0.72057–0.72129 and εNd(220 Ma) = −9.57 to −9.75. Their initial Pb isotopic ratios are: 206Pb/204Pb = 18.988–19.711; 208Pb/204Pb = 39.713–40.216; and 207Pb/204Pb = 15.799–15.863. The Sr–Nd–Pb isotopic data and TDM2 ages suggest that the LC granitic magma had a predominantly crustal source. The REE minerals are important features of these deposits, with feldspars and micas altering to clay minerals containing Ree3+ (exchangeable REE), whose concentration is influenced by the intensity of weathering; the stronger the chemical weathering, the more REE minerals are dissolved. Secondary mineralization is also a decisive factor for Ree3+ enrichment. Stable geology within a narrow altitudinal range of 300–600 m enhances Ree3+ retention.

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3