Abstract
Smart grid technology has given users the ability to regulate their home energy use more efficiently and effectively. Home Energy Management (HEM) is a difficult undertaking in this regard, as it necessitates the optimal scheduling of smart appliances to reduce energy usage. In this research, we introduce a metaheuristic-based HEM system which incorporates Earth Worm Algorithm (EWA) and Harmony Search Algorithms (HSA). In addition, a hybridization based on the EWA and HSA operators is used to optimize energy consumption in terms of electricity cost and Peak-to-Average Ratio (PAR) reduction. Hybridization has been demonstrated to be beneficial in achieving many objectives at the same time. Extensive simulations in MATLAB were used to test the performance of the proposed hybrid technique. The simulations were run for multiple homes with multiple appliances, which were categorized according to the usage and nature of the appliance, taking advantage of appliance scheduling in terms of the time-varying retail pricing enabled by the smart grid two-way communication infrastructure algorithms EWA and HSA, along with a Real-Time Price scheme. These techniques helped us to find the best usage pattern for energy consumption to reduce electricity costs. These metaheuristic techniques efficiently reduced and shifted the load from peak hours to off-peak hours and reduced electricity costs. In comparison to HSA, the simulation results suggest that EWA performed better in terms of cost reduction. In comparison to EWA and HSA, HSA was more efficient in terms of PAR. However, the proposed hybrid approach EHSA gave the maximum reduction in cost which was 2.668%, 2.247%, and 2.535% in the case of 10, 30, and 50 homes, respectively, as compared to EWA and HSA.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献