Smart Grid Energy Optimization and Scheduling Appliances Priority for Residential Buildings through Meta-Heuristic Hybrid Approaches

Author:

Hassan Ch Anwar ulORCID,Iqbal JawaidORCID,Ayub NasirORCID,Hussain SaddamORCID,Alroobaea RoobaeaORCID,Ullah Syed SajidORCID

Abstract

Smart grid technology has given users the ability to regulate their home energy use more efficiently and effectively. Home Energy Management (HEM) is a difficult undertaking in this regard, as it necessitates the optimal scheduling of smart appliances to reduce energy usage. In this research, we introduce a metaheuristic-based HEM system which incorporates Earth Worm Algorithm (EWA) and Harmony Search Algorithms (HSA). In addition, a hybridization based on the EWA and HSA operators is used to optimize energy consumption in terms of electricity cost and Peak-to-Average Ratio (PAR) reduction. Hybridization has been demonstrated to be beneficial in achieving many objectives at the same time. Extensive simulations in MATLAB were used to test the performance of the proposed hybrid technique. The simulations were run for multiple homes with multiple appliances, which were categorized according to the usage and nature of the appliance, taking advantage of appliance scheduling in terms of the time-varying retail pricing enabled by the smart grid two-way communication infrastructure algorithms EWA and HSA, along with a Real-Time Price scheme. These techniques helped us to find the best usage pattern for energy consumption to reduce electricity costs. These metaheuristic techniques efficiently reduced and shifted the load from peak hours to off-peak hours and reduced electricity costs. In comparison to HSA, the simulation results suggest that EWA performed better in terms of cost reduction. In comparison to EWA and HSA, HSA was more efficient in terms of PAR. However, the proposed hybrid approach EHSA gave the maximum reduction in cost which was 2.668%, 2.247%, and 2.535% in the case of 10, 30, and 50 homes, respectively, as compared to EWA and HSA.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3