Highly Efficient Solar Laser Pumping Using a Solar Concentrator Combining a Fresnel Lens and Modified Parabolic Mirror

Author:

Cai Zitao,Zhao Changming,Zhao Ziyin,Yao Xingyu,Zhang Haiyang,Zhang Zilong

Abstract

Solar-pumped lasers (SPLs) allow direct solar-to-laser power conversion, and hence, provide an opportunity to harness a renewable energy source. Herein, we report significant improvements in end-side-pumped solar laser collection efficiency and beam brightness using a novel 1.5-m-diameter compound solar concentrator combining a Fresnel lens and modified parabolic mirror. A key component of this scheme is the off-axis-focused parabolic mirror. An original dual-parabolic pump cavity is another feature. To determine the dependence of the SPL performance on the distance between the focus and central axis of the modified parabolic mirror, several systems with different distances were optimized using TracePro and ASLD software. It was numerically calculated that end-side pumping a 5-mm-diameter, 22-mm-long Nd:YAG crystal rod would generate 74.6 W of continuous-wave solar laser power at a collection efficiency of 42.2 W/m2, i.e., 1.1 times greater than the previous record value. Considering the laser beam quality, a brightness figure of 0.063 W was obtained, which is higher than that of other multimode SPL designs with end-side pumping. Thus, our SPL concentrator offers the possibility of achieving a beam quality as high as that obtainable via side pumping, alongside highly efficient energy conversion, which is characteristic to end-side pumping.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3