Uni-Messe: Unified Rule-Based Message Delivery Service for Efficient Context-Aware Service Integration

Author:

Nakata TakuyaORCID,Chen SinanORCID,Nakamura Masahide

Abstract

Rule-based systems, which are the typical technology used to realize context-aware services, have been independently implemented in various smart services. The challenges of these systems are the versatility of action, looseness, and the coding that is needed to describe the conditional branches. The purpose of this study was to support the realization of service coordination and smart services using context-aware technology by converting rule-based systems into services. In the proposed method, we designed and implemented the architecture of a new service: Unified Rule-Based Message Delivery Service (Uni-messe), which is an application-neutral rule management and evaluation service for rule-based systems. The core part of the Uni-messe proposal is the combination of a Pub/Sub and a rule-based system, and the proposal of a new event–condition–route (ECR) rule-based system. We applied Uni-messe to an audio information presentation system (ALPS) and indoor location sensing technology to construct concrete smart services, and then compared and evaluated the implementation to “if this then that” (IFTTT), which is a typical service coordination technology. Moreover, we analyzed the characteristics of other rule-based systems that have been serviced in previous studies and compared them to Uni-messe. This study shows that Uni-messe can provide services that simultaneously combine versatility, ease of conditional description, looseness, context independence, and user interface (UI), which cannot be achieved using conventional rule-based system services. By using Uni-messe, advanced heterogeneous distributed service coordination using rule-based systems and the construction of context-aware services can be performed easily.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Proposal an Automated Management Service for Hybrid Meeting Spaces Using Uni-Messe and IoT;2023 IEEE International Conference on Artificial Intelligence in Engineering and Technology (IICAIET);2023-09-12

2. Dialogue-Based User Needs Extraction for Effective Service Personalization;Lecture Notes in Computer Science;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3