An Autonomous Wireless Health Monitoring System Based on Heartbeat and Accelerometer Sensors

Author:

Fakhrulddin Saif Saad,Gharghan Sadik KamelORCID

Abstract

Falls are a main cause of injury for patients with certain diseases. Patients who wear health monitoring systems can go about daily activities without limitations, thereby enhancing their quality of life. In this paper, patient falls and heart rate were accurately detected and measured using two proposed algorithms. The first algorithm, abnormal heart rate detection (AHRD), improves patient heart rate measurement accuracy and distinguishes between normal and abnormal heart rate functions. The second algorithm, TB-AIC, combines an acceleration threshold and monitoring of patient activity/inactivity functions to accurately detect patient falls. The two algorithms were practically implemented in a proposed autonomous wireless health monitoring system (AWHMS). The AWHMS was implemented based on a GSM module, GPS, microcontroller, heartbeat and accelerometer sensors, and a smartphone. The measurement accuracy of the recorded heart rate was evaluated based on the mean absolute error, Bland–Altman plots, and correlation coefficients. Fourteen types of patient activities were considered (seven types of falling and seven types of daily activities) to determine the fall detection accuracy. The results indicate that the proposed AWHMS succeeded in monitoring the patient’s vital signs, with heart rate measurement and fall detection accuracies of 98.75% and 99.11%, respectively. In addition, the sensitivity and specificity of the fall detection algorithm (both 99.12%) were explored.

Publisher

MDPI AG

Subject

Control and Optimization,Computer Networks and Communications,Instrumentation

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Remote Health Monitoring System Using Microcontroller—Suitable for Rural and Elderly Patients;Smart Innovation, Systems and Technologies;2023

2. Collapse Detection Using Fusion of Sensor;Emerging Research in Computing, Information, Communication and Applications;2022-12-13

3. Multimodal Wearable Technology Approaches to Human Falls;2022 IEEE International Humanitarian Technology Conference (IHTC);2022-12-02

4. Design and Development Integrated Sensor System for Measuring Body Temperature and Heart Rate;2022 10th International Conference on Cyber and IT Service Management (CITSM);2022-09-20

5. Low cost, non-invasive, and continuous vital signs monitoring device for pregnant women in low resource settings (Lvital device);HardwareX;2022-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3