Hierarchical Pooling in Graph Neural Networks to Enhance Classification Performance in Large Datasets

Author:

Pham Hai VanORCID,Thanh Dat HoangORCID,Moore PhilipORCID

Abstract

Deep learning methods predicated on convolutional neural networks and graph neural networks have enabled significant improvement in node classification and prediction when applied to graph representation with learning node embedding to effectively represent the hierarchical properties of graphs. An interesting approach (DiffPool) utilises a differentiable graph pooling technique which learns ‘differentiable soft cluster assignment’ for nodes at each layer of a deep graph neural network with nodes mapped on sets of clusters. However, effective control of the learning process is difficult given the inherent complexity in an ‘end-to-end’ model with the potential for a large number parameters (including the potential for redundant parameters). In this paper, we propose an approach termed FPool, which is a development of the basic method adopted in DiffPool (where pooling is applied directly to node representations). Techniques designed to enhance data classification have been created and evaluated using a number of popular and publicly available sensor datasets. Experimental results for FPool demonstrate improved classification and prediction performance when compared to alternative methods considered. Moreover, FPool shows a significant reduction in the training time over the basic DiffPool framework.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference45 articles.

1. Towards graph pooling by edge contraction;Diehl,2019

2. Deep learning applications and challenges in big data analytics

3. How powerful are graph neural networks?;Xu;arXiv,2018

4. Convolutional networks on graphs for learning molecular fingerprints;Duvenaud;arXiv,2015

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3