Abstract
We treated Candida albicans cells with a sublethal dose of nonequilibrium (cold) atmospheric-pressure He plasma and studied alterations in the genome of this fungus as well as changes in the phenotypic traits, such as assimilation of carbon from carbohydrates, hydrolytic enzyme activity, and drug susceptibility. There is a general problem if we use cold plasma to kill microorganism cells and some of them survive the process—whether the genotypic and phenotypic features of the cells are significantly altered in this case, and, if so, whether these changes are environmentally hazardous. Our molecular genetic studies have identified six single nucleotide variants, six insertions, and five deletions, which are most likely significant changes after plasma treatment. It was also found that out of 19 tested hydrolytic enzymes, 10 revealed activity, of which nine temporarily decreased their activity and one (naphthol-AS-BI- phosphohydrolase) permanently increased activity as a result of the plasma treatment. In turn, carbon assimilation and drug susceptibility were not affected by plasma. Based on the performed studies, it can be concluded that the observed changes in C. albicans cells that survived the plasma action are not of significant importance to the environment, especially for the drug resistance and pathogenicity of this fungus.
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Reference62 articles.
1. Plasma Medicine—Applications of Low-Temperature Gas. Plasmas in Medicine and Biology,2012
2. Plasma Medicine;Fridman,2013
3. Gas Plasma Sterilization in Microbiology—Theory, Applications, Pitfalls and New Perspectives,2016
4. Cold Plasma in Medicine and Healthcare: The New Frontier in Low Temperature Plasma Applications
5. Dosing: The key to precision plasma oncology
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献