Abstract
Pyrroloquinoline quinone (PQQ) is a novel stimulator of mitochondrial biogenesis and cellular energy metabolism. This is the first study investigating regulatory mechanisms and metabolic responses underlying PQQ’s action in palmitate-exposed L6 myotubes. Particularly, we assessed alterations in lipid content and composition, expression of metabolic enzymes, and changes in glucose transport. The experiments were conducted using muscle cells subjected to short (2 h) and prolonged (24 h) incubation with PQQ in a sequence of pre- and post-palmitic acid (PA) exposure. We demonstrated the opposite effects of 2 and 24 h treatments with PQQ on lipid content, i.e., a decline in the level of free fatty acids and triacylglycerols in response to short-time PQQ incubation as compared to increases in diacylglycerol and triacylglycerol levels observed after 24 h. We did not demonstrate a significant impact of PQQ on fatty acid transport. The analysis of metabolic enzyme expression showed that the vast majority of PQQ-dependent alterations cumulated in the PA/PQQ 24 h group, including elevated protein amount of peroxisome proliferator activated receptor γ co-activator 1α (PGC-1α), sirtuin-1 (SIRT1), phosphorylated 5′AMP-activated protein kinase (pAMPK), carnitine palmitoyltransferase I (CPT1), citrate synthase (CS), fatty acid synthase (FAS), and serine palmitoyltransferase, long chain base subunit 1 (SPT1). In conclusion, the results mentioned above indicate PQQ-dependent activation of both fatty acid oxidation and lipid synthesis in order to adapt cells to palmitic acid-rich medium, although PQQ did not attenuate insulin resistance in muscle cells.
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献