A Genomic Approach to Investigating Ocular Surface Microorganisms: Monitoring Core Microbiota on Eyelid Margin with a Dot hybridization Assay

Author:

Kuo Ming-TseORCID,Chao Tsai-Ling,Kuo Shu-FangORCID,Chien Chun-Chih,Chen Alexander,Lai Yu-Hsuan,Huang Yu-Ting

Abstract

A sound ocular surface microbiota has been recognized as a part of ocular surface health following a growing body of evidence from next-generation sequencing technique and metagenomic analysis. However, even from the perspective of contemporary precision medicine, it is difficult to directly apply these new technologies to clinical practice. Therefore, we proposed a model based on dot hybridization assay (DHA) to bridge conventional culture with a metagenomic approach in investigating and monitoring ocular surface microbiota. Endophthalmitis, mostly caused by bacterial infection, is the most severe complication of many intraocular surgeries, such as cataract surgery. Hazardous microorganisms hiding and proliferating in the ocular surface microbiota not only increase the risk of endophthalmitis but also jeopardize the effectiveness of the preoperative aseptic procedure and postoperative topical antibiotics. The DHA model enables the simultaneous assessment of bacterial bioburden, detection of target pathogens and microorganisms, and surveillance of methicillin/oxacillin resistance gene mecA in the ocular surface microbiota. This assay revealed heavier bacterial bioburden in men, compatible with a higher risk of endophthalmitis in male patients who underwent cataract surgery. No occurrence of endophthalmitis for these patients was compatible with non-hazardous microorganisms identified by specific dots for target pathogens. Moreover, the mecA dot detected oxacillin-resistant strains, of which culture failed to isolate. Therefore, the DHA model could provide an alternative genomic approach to investigate and monitor ocular surface microorganisms in clinical practice nowadays.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3