Ethanol Intoxication Alleviates the Inflammatory Response of Remote Organs to Experimental Traumatic Brain Injury

Author:

Xu Baolin,Chandrasekar Akila,olde Heuvel Florian,Powerski Maciej,Nowak Aleksander,Noack LaurensORCID,Omari Jazan,Huber-Lang Markus,Roselli FrancescoORCID,Relja Borna

Abstract

Traumatic brain injury (TBI) may cause damage to distant organs. Acute ethanol intoxication (EI) induces complex local and systemic anti-inflammatory effects and influences the early outcomes of traumatized patients. Here, we evaluated its effects on the BI-induced expression of local inflammatory mediators in the trauma-remote organs the lungs and liver. Male mice were exposed to ethanol as a single oral dose (5g·kg–1, 32%) before inducing a moderate blunt TBI. Sham groups underwent the same procedures without TBI. Ether 3 or 6h after the TBI, the lung and liver were collected. The gene expression of HMGB1, IL-6, MMP9, IL-1β, and TNF as well as the homogenate protein levels of receptor for advanced glycation end products (RAGE), IL-6, IL-1β, and IL-10 were analyzed. Liver samples were immunohistologically stained for HMGB1. EI decreased the gene expressions of the proinflammatory markers HMGB1, IL-6, and MMP9 in the liver upon TBI. In line with the reduced gene expression, the TBI-induced protein expression of IL-6 in liver tissue homogenates was significantly reduced by EI at 3h after TBI. While the histological HMGB1 expression was enhanced by TBI, the RAGE protein expression in the liver tissue homogenates was diminished after TBI. EI reduced the histological HMGB1 expression and enhanced the hepatic RAGE protein expression at 6h post TBI. With regard to the lungs, EI significantly reduced the gene expressions of HMGB1, IL-6, IL-1β, and TNF upon TBI, without significantly affecting the protein expression levels of inflammatory markers (RAGE, IL-6, IL-1β, and IL-10). At the early stage of TBI-induced inflammation, the gene expression of inflammatory mediators in both the lungs and liver is susceptible to ethanol-induced remote effects. Taken together, EI may alleviate the TBI-induced pro-inflammatory response in the trauma-distant organs, the lungs and liver, via the HMGB1-RAGE axis.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3