Abstract
Inflammatory bowel disease (IBD) is characterized by inflammation, angiogenesis, and lymphangiogenesis. Artemisinin (Art), a chemical compound isolated from Artemisia annua L. (sweet wormwood), has several biochemical properties including antibacterial, anticancer, anti-inflammation, and anti-angiogenesis effects. We investigated the effects of Art on inflammation-induced lymphangiogenesis in a dextran sulfate sodium (DSS)-induced mouse acute colitis model. The mice were orally administered Art for 7 days before being evaluated using the disease activity index (DAI) and documenting colonic inflammatory changes, colon edema, microvessel density, lymphatic vessel density (LVD), proinflammatory cytokine levels, and vascular endothelial growth factor (VEGF)-C and VEGF-D/VEGF receptor (VEGFR)-3 mRNA expression levels in colon tissue. Art reduced DSS-induced lymphatic vessel endothelial hyaluronan receptor-1-positive LVD. Art also reduced the symptoms of colitis, improved tissue histology, and relieved inflammatory edema in mice affected by colitis. In addition, Art decreased the infiltration of immunomodulatory cells and inflammatory cytokines, which involved reduction of VEGF-C, -D, and VEGFR-3 expression. Taken together, our findings suggest that Art ameliorates inflammation-driven lymphangiogenesis in an experimental colitis mouse model via the VEGF-C/VEGFR-3 signaling pathway, implicating this pathway as a potential target for the treatment of IBD.
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献