Extracellular Matrix-Specific Platelet Activation Leads to a Differential Translational Response and Protein De Novo Synthesis in Human Platelets

Author:

Kraemer Bjoern F.,Geimer Marc,Franz-Wachtel Mirita,Lamkemeyer Tobias,Mannell Hanna,Lindemann Stephan

Abstract

Platelets are exposed to extracellular matrix (ECM) proteins like collagen and laminin and to fibrinogen during acute vascular events. However, beyond hemostasis, platelets have the important capacity to migrate on ECM surfaces, but the translational response of platelets to different extracellular matrix stimuli is still not fully characterized. Using 2D-gel electrophoresis, confocal microscopy, polysome analysis and protein sequencing by mass spectrometry, we demonstrate that platelets show a differential expression profile of newly synthesized proteins on laminin, collagen or fibrinogen. In this context, we observed a characteristic, ECM-dependent translocation phenotype of translation initiation factor eIF4E to the ribosomal site. eIF4E accumulated in polysomes with increased binding of mRNA and co-localization with vinculin, leading to de novo synthesis of important cytoskeletal regulator proteins. As the first study, we included a proteome analysis of laminin-adherent platelets and interestingly identified upregulation of essentially important proteins that mediate cytoskeletal regulation and mobility in platelets, such as filamin A, talin, vinculin, gelsolin, coronin or kindlin-3. In summary, we demonstrate that platelet activation with extracellular matrix proteins results in a distinct stimulus-specific translational response of platelets that will help to improve our understanding of the regulation of platelet mobility and migration.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3