Prediction of Protein–ligand Interaction Based on Sequence Similarity and Ligand Structural Features

Author:

Karasev Dmitry,Sobolev Boris,Lagunin AlexeyORCID,Filimonov Dmitry,Poroikov VladimirORCID

Abstract

Computationally predicting the interaction of proteins and ligands presents three main directions: the search of new target proteins for ligands, the search of new ligands for targets, and predicting the interaction of new proteins and new ligands. We proposed an approach providing the fuzzy classification of protein sequences based on the ligand structural features to analyze the latter most complicated case. We tested our approach on five protein groups, which represented promised targets for drug-like ligands and differed in functional peculiarities. The training sets were built with the original procedure overcoming the data ambiguity. Our study showed the effective prediction of new targets for ligands with an average accuracy of 0.96. The prediction of new ligands for targets displayed the average accuracy 0.95; accuracy estimates were close to our previous results, comparable in accuracy to those of other methods or exceeded them. Using the fuzzy coefficients reflecting the target-to-ligand specificity, we provided predicting interactions for new proteins and new ligands; the obtained accuracy values from 0.89 to 0.99 were acceptable for such a sophisticated task. The protein kinase family case demonstrated the ability to account for subtle features of proteins and ligands required for the specificity of protein–ligand interaction.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3