Bacteria Residing at Root Canals Can Induce Cell Proliferation and Alter the Mechanical Properties of Gingival and Cancer Cells

Author:

Suprewicz ŁukaszORCID,Tokajuk Grażyna,Cieśluk MateuszORCID,Deptuła PiotrORCID,Sierpińska Teresa,Wolak PrzemysławORCID,Wollny Tomasz,Tokajuk Joanna,Głuszek StanisławORCID,Piktel Ewelina,Bucki RobertORCID

Abstract

Understanding the importance of oral microbiota in human health and disease also leads to an expansion of the knowledge on functional, metabolic, and molecular alterations directly contributing to oral and systemic pathologies. To date, a compelling number of studies have documented the crucial role of some oral cavity-occurring microbes in the initiation and progression of cancers. Although this effect was noted primarily for Fusobacterium spp., the potential impact of other oral microbes is also worthy of investigation. In this study, we aimed to assess the effect of Enterococcus faecalis, Actinomyces odontolyticus, and Propionibacterium acnes on the proliferation capability and mechanical features of gingival cells and cell lines derived from lung, breast, and ovarian cancers. For this purpose, we incubated selected cell lines with heat-inactivated bacteria and supernatants collected from biofilms, cultured in both anaerobic and aerobic conditions, in the presence of surgically removed teeth and human saliva. The effect of oral bacteria on cell population growth is variable, with the highest growth-promoting abilities observed for E. faecalis in relation to human primary gingival fibroblasts (HGF) and lung cancer A549 cells, and P. acnes in relation to breast cancer MCF-7 and ovarian cancer SKOV-3 cells. Notably, this effect seems to depend on a delicate balance between the pro-stimulatory and toxic effects of bacterial-derived products. Regardless of the diverse effect of bacterial products on cellular proliferation capability, we observed significant alterations in stiffness of gingival and lung cancer cells stimulated with E. faecalis bacteria and corresponding biofilm supernatants, suggesting a novel molecular mechanism involved in the pathogenesis of diseases in oral cavities and tooth tissues. Accordingly, it is proposed that analysis of cancerogenic features of oral cavity bacteria should be multivariable and should include investigation of potential alterations in cell mechanical properties. These findings corroborate the important role of oral hygiene and root canal treatment to assure the healthy stage of oral microbiota.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3