Targeting DNA Damage Response in Prostate and Breast Cancer

Author:

Wengner Antje M.,Scholz Arne,Haendler BernardORCID

Abstract

Steroid hormone signaling induces vast gene expression programs which necessitate the local formation of transcription factories at regulatory regions and large-scale alterations of the genome architecture to allow communication among distantly related cis-acting regions. This involves major stress at the genomic DNA level. Transcriptionally active regions are generally instable and prone to breakage due to the torsional stress and local depletion of nucleosomes that make DNA more accessible to damaging agents. A dedicated DNA damage response (DDR) is therefore essential to maintain genome integrity at these exposed regions. The DDR is a complex network involving DNA damage sensor proteins, such as the poly(ADP-ribose) polymerase 1 (PARP-1), the DNA-dependent protein kinase catalytic subunit (DNA-PKcs), the ataxia–telangiectasia-mutated (ATM) kinase and the ATM and Rad3-related (ATR) kinase, as central regulators. The tight interplay between the DDR and steroid hormone receptors has been unraveled recently. Several DNA repair factors interact with the androgen and estrogen receptors and support their transcriptional functions. Conversely, both receptors directly control the expression of agents involved in the DDR. Impaired DDR is also exploited by tumors to acquire advantageous mutations. Cancer cells often harbor germline or somatic alterations in DDR genes, and their association with disease outcome and treatment response led to intensive efforts towards identifying selective inhibitors targeting the major players in this process. The PARP-1 inhibitors are now approved for ovarian, breast, and prostate cancer with specific genomic alterations. Additional DDR-targeting agents are being evaluated in clinical studies either as single agents or in combination with treatments eliciting DNA damage (e.g., radiation therapy, including targeted radiotherapy, and chemotherapy) or addressing targets involved in maintenance of genome integrity. Recent preclinical and clinical findings made in addressing DNA repair dysfunction in hormone-dependent and -independent prostate and breast tumors are presented. Importantly, the combination of anti-hormonal therapy with DDR inhibition or with radiation has the potential to enhance efficacy but still needs further investigation.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 48 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3