Rumen Methanogenesis, Rumen Fermentation, and Microbial Community Response to Nitroethane, 2-Nitroethanol, and 2-Nitro-1-Propanol: An In Vitro Study

Author:

Zhang Zhenwei,Wang Yanlu,Si Xuemeng,Cao Zhijun,Li Shengli,Yang HongjianORCID

Abstract

Nitroethane (NE), 2-nitroethanol (NEOH), and 2-nitro-1-propanol (NPOH) were comparatively examined to determine their inhibitory actions on rumen fermentation and methanogenesis in vitro. Fermentation characteristics, CH4 and total gas production, and coenzyme contents were determined at 6, 12, 24, 48, and 72 h incubation time, and the populations of ruminal microbiota were analyzed by real-time PCR at 72 h incubation time. The addition of NE, NEOH, and NPOH slowed down in vitro rumen fermentation and reduced the proportion of molar CH4 by 96.7%, 96.7%, and 41.7%, respectively (p < 0.01). The content of coenzymes F420 and F430 and the relative expression of the mcrA gene declined with the supplementation of NE, NEOH, and NPOH in comparison with the control (p < 0.01). The addition of NE, NEOH, and NPOH decreased total volatile fatty acids (VFAs) and acetate (p < 0.05), but had no effect on propionate concentration (p > 0.05). Real-time PCR results showed that the relative abundance of total methanogens, Methanobacteriales, Methanococcales, and Fibrobacter succinogenes were reduced by NE, NEOH, and NPOH (p < 0.05). In addition, the nitro-degradation rates in culture fluids were ranked as NEOH (−0.088) > NE (−0.069) > NPOH (−0.054). In brief, the results firstly provided evidence that NE, NEOH, and NPOH were able to decrease methanogen abundance and dramatically decrease mcrA gene expression and coenzyme F420 and F430 contents with different magnitudes to reduce ruminal CH4 production.

Funder

National Natural Science Foundation of China

National Key Research and Development Project of China

Publisher

MDPI AG

Subject

General Veterinary,Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3