A Novel Arc Detection Method for DC Railway Systems

Author:

Seferi YljonORCID,Blair Steven M.ORCID,Mester ChristianORCID,Stewart Brian G.ORCID

Abstract

Electric arcing due to contact interruption between the pantograph and the overhead contact line in electrified railway networks is an important and unwanted phenomenon. Arcing events are short-term power quality disturbances that produce significant electromagnetic disturbances both conducted and radiated as well as increased degradation on contact wire and contact strip of the pantograph. Early-stage detection can prevent further deterioration of the current collection quality, reduce excessive wear in the pantograph-catenary system, and mitigate failure of the pantograph contact strip. This paper presents a novel arc detection method for DC railway networks. The method quantifies the rate-of-change of the instantaneous phase of the oscillating pantograph current signal during an arc occurrence through the Hilbert transform. Application of the method to practical pantograph current data measurements, demonstrates that phase derivative is a useful parameter for detecting and localizing significant power quality disturbances due to electric arcs during both coasting and regenerative braking phases of a running locomotive. The detected number of arcs may be used to calculate the distribution of the arcs per kilometre as an alternative estimation of the current collection quality index and consequently used to assess the pantograph-catenary system performance. The detected arc number may also contribute to lowering predictive maintenance costs of pantograph-catenary inspections works as these can be performed only at determined sections of the line extracted by using arcing time locations and speed profiles of the locomotive.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference44 articles.

1. CENELEC EN 50317:2012 Railway Applications–Current Collection Systems—Requirements for and Validation of Measurements of the Dynamic Interaction between Pantograph and Overhead Contact Line,2012

2. CENELEC EN 50367:2012 Railway Applications–Current Collection Systems—Technical Criteria for the Interaction between Pantograph and Overhead Line ( to Achieve Free Access ),2012

3. CENELEC EN 50119:2020 Railway Applications–Fixed Installations—Electric Traction Overhead Contact Lines,2020

4. Phototube sensor for monitoring the quality of current collection on overhead electrified railways

5. Wavelet multiresolution analysis for monitoring the occurrence of arcing on overhead electrified railways

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3