Abstract
The coarse-mesh finite difference (CMFD) scheme is a very effective nonlinear diffusion acceleration method for neutron transport calculations. CMFD can become unstable and fail to converge when the computational cell optical thickness is relatively large in k-eigenvalue problems or diffusive fixed-source problems. Some variants and fixups have been developed to enhance the stability of CMFD, including the partial current-based CMFD (pCMFD), optimally diffusive CMFD (odCMFD), and linear prolongation-based CMFD (lpCMFD). Linearized Fourier analysis has proven to be a very reliable and accurate tool to investigate the convergence rate and stability of such coupled high-order transport/low-order diffusion iterative schemes. It is shown in this paper that the use of different transport solvers in Fourier analysis may have some potential implications on the development of stabilizing techniques, which is exemplified by the odCMFD scheme. A modification to the artificial diffusion coefficients of odCMFD is proposed to improve its stability. In addition, two explicit expressions are presented to calculate local optimal successive overrelaxation (SOR) factors for lpCMFD to further enhance its acceleration performance for fixed-source problems and k-eigenvalue problems, respectively.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Reference16 articles.
1. Nodal Method Storage Reduction by Non-Linear Iteration;Smith;Trans. Am. Nucl. Soc.,1984
2. CASMO Characteristics Methods for Two-Dimensional PWR and BWR Core Calculations;Smith;Trans. Am. Nucl. Soc.,2000
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献