Learning Feedforward Control Using Multiagent Control Approach for Motion Control Systems

Author:

Dao Phong B.ORCID

Abstract

Multiagent control system (MACS) has become a promising solution for solving complex control problems. Using the advantages of MACS-based design approaches, a novel solution for advanced control of mechatronic systems has been developed in this paper. The study has aimed at integrating learning control into MACS. Specifically, learning feedforward control (LFFC) is implemented as a pattern for incorporation in MACS. The major novelty of this work is that the feedback control part is realized in a real-time periodic MACS, while the LFFC algorithm is done on-line, asynchronously, and in a separate non-real-time aperiodic MACS. As a result, a MACS-based LFFC design method has been developed. A second-order B-spline neural network (BSN) is used as a function approximator for LFFC whose input-output mapping can be adapted during control and is intended to become equal to the inverse model of the plant. To provide real-time features for the MACS-based LFFC system, the open robot control software (OROCOS) has been employed as development and runtime environment. A case study using a simulated linear motor in the presence of nonlinear cogging and friction force as well as mass variations is used to illustrate the proposed method. A MACS-based LFFC system has been designed and implemented for the simulated plant. The system consists of a setpoint generator, a feedback controller, and a time-index LFFC that can learn on-line. Simulation results have demonstrated the applicability of the design method.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3