Peak Ratio Characteristic Value Sequence Based Signal Processing Method for Transit-Time Ultrasonic Gas Flowmeter

Author:

Li Bin,Gou YangORCID,Chen Jie,Zhang Zhengyu

Abstract

The transit-time ultrasonic gas flowmeter plays a vital part in the measurement field with its unique advantages. In recent years, it has developed into a research hotspot in the field of gas flow measurement. However, while the ultrasonic signal propagates in gas, the amplitude fluctuation of the ultrasonic signal is produced under the condition of energy attenuation and unstable flow field. This leads to inaccurate transit time of ultrasonic signal that causes flow calculation errors. Aiming at this problem, a signal processing method is proposed in this paper for the transit-time ultrasonic gas flowmeter based on the peak ratio characteristic value sequence (PRCVS). Through the research on the mathematical model of ultrasonic signal, the ratio of the amplitude of adjacent peaks is defined as the peak ratio characteristic value (PRCV) of the peak. According to the corresponding relationship between the PRCV and the peak serial number, a set of reference PRCVS is established. By matching the characteristic value of the ultrasonic signal with the reference characteristic value sequence, the peak serial number can be determined. In this research, the PRCVS-based signal processing method is applied to the gas flow measurement system based on time-to-digital converter (TDC) that has strict requirements on the peak serial number which can verify the validity of the method. The calibration experiment of basic measurement performance test and the unstable flow field experiment of the curved pipe were performed on the gas flow standard device, which verified the stability and validity of the method proposed in this paper.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3