Sizing and Cost Minimization of Standalone Hybrid WT/PV/Biomass/Pump-Hydro Storage-Based Energy Systems

Author:

Alturki Fahd A.,Awwad Emad MahrousORCID

Abstract

In this study, a standalone hybrid wind turbine (WT)/photovoltaic (PV)/biomass/pump-hydro-storage energy system was designed and optimized based on technical, economic, and environmental parameters to provide the load demand with an objective function of minimum cost of energy (COE). The constraints of the proposed approach are the loss of power supply probability, and the excess energy fraction. The proposed approach allows the combination of different sources of energy to provide the best configuration of the hybrid system. Therefore, the proposed system was optimized and compared with a WT/PV/biomass/battery storage-based hybrid energy system. This study proposes three different optimization algorithms for sizing and minimizing the COE, including the whale optimization algorithm (WOA), firefly algorithm (FF) and particle swarm optimization (PSO) and the optimization procedure was executed using MATLAB software. The outcomes of these algorithms are contrasted to select the most effective, and the one providing the minimum COE is chosen based on statistical analysis. The results indicate that the proposed hybrid WT/PV/biomass/pump-hydro storage energy system is environmentally and economically practical. Meanwhile, the outcomes demonstrated the technical feasibility of a pump-hydro energy storage system in expanding the penetration of renewable energy sources compared to other existing systems. The COE of the pumped-hydro storage hybrid system was found to be lower (0.215 $/kWh) than that with batteries storage hybrid system (0.254 $/kWh) which was determined using WOA at the same load demand.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3