Effect of Pebble Size Distribution and Wall Effect on Inner Packing Structure and Contact Force Distribution in Tritium Breeder Pebble Bed

Author:

Gong BaopingORCID,Cheng Hao,Feng Yongjin,Luo Xiaofang,Wang Long,Wang Xiaoyu

Abstract

In the tritium breeding blanket of nuclear fusion reactors, the heat transfer behavior and thermal-mechanical response of the tritium breeder pebble bed are affected by the inner packing structure, which is crucial for the design and optimization of a reliable pebble bed in tritium breeding blanket. Thus, the effect of pebble size distribution and fixed wall effect on packing structure and contact force in the poly-disperse pebble bed were investigated by numerical simulation. The results show that pebble size distribution has a significant influence on the inner packing structure of pebble bed. With the increase of the dispersion of pebble size, the average porosity and the average coordination number of the poly-disperse pebble bed gradually decrease. Due to the influence of the fixed wall, the porosity distribution of the pebble bed shows an obvious wall effect. For poly-disperse pebble bed, the influenced region of the wall effect gradually decreases with the increase of the dispersion of pebble size. In addition, the gravity effect and the pebble size distribution have an obvious influence on the contact force distribution inside the poly-disperse pebble bed. The majority of the contact force are weak contact force that is less than the average contact force. Only a few of pebbles have strong contact force that is greater than average contact force. This investigation can help in analyzing the pebble crushing characteristics and the thermal hydraulic analysis in the poly-disperse tritium breeder pebble bed.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Sichuan Province Science and Technology Support Program

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3