Abstract
The scheduling of tasks in a production line is a complex problem that needs to take into account several constraints, such as product deadlines and machine limitations. With innovative focus, the main constraint that will be addressed in this paper, and that usually is not considered, is the energy consumption cost in the production line. For that, an approach based on genetic algorithms is proposed and implemented. The use of local energy generation, especially from renewable sources, and the possibility of having multiple energy providers allow the user to manage its consumption according to energy prices and energy availability. The proposed solution takes into account the energy availability of renewable sources and energy prices to optimize the scheduling of a production line using a genetic algorithm with multiple constraints. The proposed algorithm also enables a production line to participate in demand response events by shifting its production, by using the flexibility of production lines. A case study using real production data that represents a textile industry is presented, where the tasks for six days are scheduled. During the week, a demand response event is launched, and the proposed algorithm shifts the consumption by changing task orders and machine usage.
Funder
Fundação para a Ciência e a Tecnologia
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献