The Interactive Effects between Drought and Air Pollutants on Children’s Upper Respiratory Tract Infection: A Time-Series Analysis in Gansu, China

Author:

Li Yanlin1,Sun Jianyun2,Lei Ruoyi1,Zheng Jie1,Tian Xiaoyu1,Xue Baode1,Luo Bin134

Affiliation:

1. Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou 730000, China

2. Gansu Provincial Centre for Diseases Prevention and Control, Lanzhou 730000, China

3. Shanghai Key Laboratory of Meteorology and Health, Shanghai Meteorological Bureau, Shanghai 200030, China

4. Shanghai Typhoon Institute, China Meteorological Administration, Shanghai 200030, China

Abstract

As a destructive and economic disaster in the world, drought shows an increasing trend under the continuous global climate change and adverse health effects have been reported. The interactive effects between drought and air pollutants, which may also be harmful to respiratory systems, remain to be discussed. We built the generalized additive model (GAM) and distributed lag nonlinear model (DLNM) to estimate the effects of drought and air pollutants on daily upper respiratory infections (URTI) outpatient visits among children under 6 in three cities of Gansu province. The Standardized Precipitation Index (SPI) based on monthly precipitation (SPI-1) was used as an indicator of drought. A non-stratified model was established to explore the interaction effect of SPI-1 and air pollutants. We illustrated the number of daily pediatric URTI outpatient visits increased with the decrease in SPI-1. The interactive effects between air pollutants and the number of daily pediatric URTIs were significant. According to the non-stratified model, we revealed highly polluted and drought environments had the most significant impact on URTI in children. The occurrence of drought and air pollutants increased URTI in children and exhibited a significant interactive effect.

Funder

Gansu Province Young Doctoral Fund Project

Fundamental Research Funds for the Central Universities, Lanzhou University, China

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3