Research on Coal Dust Wettability Identification Based on GA–BP Model

Author:

Zheng HaotianORCID,Shi Shulei,Jiang Bingyou,Zheng Yuannan,Li Shanshan,Wang Haoyu

Abstract

Aiming at the problems of the influencing factors of coal mine dust wettability not being clear and the identification process being complicated, this study proposed a coal mine dust wettability identification method based on a back propagation (BP) neural network optimized by a genetic algorithm (GA). Firstly, 13 parameters of the physical and chemical properties of coal dust, which affect the wettability of coal dust, were determined, and on this basis, the initial weight and threshold of the BP neural network were optimized by combining the parallelism and robustness of the genetic algorithm, etc., and an adaptive GA–BP model, which could reasonably identify the wettability of coal dust was constructed. The extreme learning machine (ELM) algorithm is a single hidden layer neural network, and the training speed is faster than traditional neural networks. The particle swarm optimization (PSO) algorithm optimizes the weight and threshold of the ELM, so PSO–ELM could also realize the identification of coal dust wettability. The results showed that by comparing the four different models, the accuracy of coal dust wettability identification was ranked as GA–BP > PSO–ELM > ELM > BP. When the maximum iteration times and population size of the PSO algorithm and the GA algorithm were the same, the running time of the different models was also different, and the time consumption was ranked as ELM < BP < PSO–ELM < GA–BP. The GA–BP model had the highest discrimination accuracy for coal mine dust wettability with an accuracy of 96.6%. This study enriched the theory and method of coal mine dust wettability identification and has important significance for the efficient prevention and control of coal mine dust as well as occupational safety and health development.

Funder

The National Key R&D Program of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Reference54 articles.

1. Status quo and development direction of coal mine dust hazard control technology in China;Sui;Min. Saf. Environ. Pro.,2019

2. Research progress and prospect of dust control Theory and Technology in Coal mine in 20 years;Cheng;Coal Sci. Technol.,2020

3. Experimental and CFD Simulation Techniques for Coal Dust Explosibility: A Review;Khan;Min. Met. Explor.,2022

4. Study on the performances of fluorescent tracers for the wetting area detection of coal seam water injection;Wang;Energy,2022

5. Experimental study of the fracturing-wetting effect of VES fracturing fluid for the coal seam water injection;Wang;J. Mol. Liq.,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3