Soil Erosion Characteristics and Scenario Analysis in the Yellow River Basin Based on PLUS and RUSLE Models

Author:

Li Yanyan,Zhang Jinbing,Zhu Hui,Zhou ZhiminORCID,Jiang Shan,He Shuangyan,Zhang Ying,Huang Yicheng,Li Mengfan,Xing Guangrui,Li Guanghui

Abstract

Soil erosion is an important global environmental issue that severely affects regional ecological environment and socio-economic development. The Yellow River (YR) is China’s second largest river and the fifth largest one worldwide. Its watershed is key to China’s economic growth and environmental security. In this study, six impact factors, including rainfall erosivity (R), soil erosivity (K), slope length (L), slope steepness (S), cover management (C), and protective measures (P), were used. Based on the revised universal soil loss equation (RUSLE) model, and combined with a geographic information system (GIS), the temporal and spatial distribution of soil erosion (SE) in the YR from 2000 to 2020 was estimated. The patch-generating land use simulation (PLUS) model was used to simulate the land-use and land-cover change (LUCC) under two scenarios (natural development and ecological protection) in 2040; the RUSLE factor P was found to be associated with LUCC in 2040, and soil erosion in the Yellow River Basin (YRB) in 2040 under the two scenarios were predicted and evaluated. This method has great advantages in land-use simulation, but soil erosion is greatly affected by rainfall and slope, and it only focuses on the link between land-usage alteration and SE. Therefore, this method has certain limitations in assessing soil erosion by simulating and predicting land-use change. We found that there is generally slight soil erosivity in the YRB, with the most serious soil erosion occurring in 2000. Areas with serious SE are predominantly situated in the upper reaches (URs), followed by the middle reaches (MRs), and soil erosion is less severe in the lower reaches. Soil erosion in the YRB decreased 11.92% from 2000 to 2020; thus, soil erosion has gradually reduced in this area over time. Based on the GIS statistics, land-use change strongly influences SE, while an increase in woodland area has an important positive effect in reducing soil erosion. By predicting land-use changes in 2040, compared to the natural development scenario, woodland and grassland under the ecological protection scenario can be increased by 1978 km2 and 2407 km2, respectively. Soil erosion can be decreased by 6.24%, indicating the implementation of woodland and grassland protection will help reduce soil erosion. Policies such as forest protection and grassland restoration should be further developed and implemented on the MRs and URs of the YR. Our research results possess important trend-setting significance for soil erosion control protocols and ecological environmental protection in other large river basins worldwide.

Funder

National Natural Science Foundation of China

Program for Innovative Research Talent in University of Henan Province

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3