Automatic Detection of Aerobic Threshold through Recurrence Quantification Analysis of Heart Rate Time Series

Author:

Zimatore Giovanna12ORCID,Serantoni Cassandra34ORCID,Gallotta Maria Chiara5ORCID,Guidetti Laura6ORCID,Maulucci Giuseppe34ORCID,De Spirito Marco34

Affiliation:

1. Department of Theoretical and Applied Sciences, eCampus University, 22060 Novedrate, Italy

2. CNR Institute for Microelectronics and Microsystems (IMM), 40129 Bologna, Italy

3. Neuroscience Department, Biophysics Section, Università Cattolica del Sacro Cuore, 00168 Rome, Italy

4. Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy

5. Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, 00185 Rome, Italy

6. Department Unicusano, Niccolò Cusano University, 00166 Rome, Italy

Abstract

During exercise with increasing intensity, the human body transforms energy with mechanisms dependent upon actual requirements. Three phases of the body’s energy utilization are recognized, characterized by different metabolic processes, and separated by two threshold points, called aerobic (AerT) and anaerobic threshold (AnT). These thresholds occur at determined values of exercise intensity(workload) and can change among individuals. They are considered indicators of exercise capacities and are useful in the personalization of physical activity plans. They are usually detected by ventilatory or metabolic variables and require expensive equipment and invasive measurements. Recently, particular attention has focused on AerT, which is a parameter especially useful in the overweight and obese population to determine the best amount of exercise intensity for weight loss and increasing physical fitness. The aim of study is to propose a new procedure to automatically identify AerT using the analysis of recurrences (RQA) relying only on Heart rate time series, acquired from a cohort of young athletes during a sub-maximal incremental exercise test (Cardiopulmonary Exercise Test, CPET) on a cycle ergometer. We found that the minima of determinism, an RQA feature calculated from the Recurrence Quantification by Epochs (RQE) approach, identify the time points where generic metabolic transitions occur. Among these transitions, a criterion based on the maximum convexity of the determinism minima allows to detect the first metabolic threshold. The ordinary least products regression analysis shows that values of the oxygen consumption VO2, heart rate (HR), and Workload correspondent to the AerT estimated by RQA are strongly correlated with the one estimated by CPET (r > 0.64). Mean percentage differences are <2% for both HR and VO2 and <11% for Workload. The Technical Error for HR at AerT is <8%; intraclass correlation coefficients values are moderate (≥0.66) for all variables at AerT. This system thus represents a useful method to detect AerT relying only on heart rate time series, and once validated for different activities, in future, can be easily implemented in applications acquiring data from portable heart rate monitors.

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3