Evaluation of the Effect of Perfluorohexane Sulfonate on the Proliferation of Human Liver Cells

Author:

Sim Kyeong Hwa1,Oh Hyeon Seo2,Lee Chuhee3ORCID,Eun Heesoo4ORCID,Lee Youn Ju1

Affiliation:

1. Department of Pharmacology, School of Medicine, Daegu Catholic University, Daegu 42472, Republic of Korea

2. Department of Neurology, Daegu Catholic University Medical Center, Daegu 42472, Republic of Korea

3. Department of Biochemistry & Molecular Biology, School of Medicine, Yeungnam University, Daegu 42415, Republic of Korea

4. Research Center for Advanced Analysis, National Agriculture and Food Research Organization (NARO), Tsukuba 305-8604, Japan

Abstract

Perfluorohexane sulfonate (PFHxS) is a widely detected replacement for legacy long-chain perfluoroalkyl substances (PFAS) in the environment and human blood samples. Its potential toxicity led to its recent classification as a globally regulated persistent organic pollutant. Although animal studies have shown a positive association between PFHxS levels and hepatic steatosis and hepatocellular hypertrophy, the link with liver toxicity, including end-stage liver cancer, remains inconclusive. In this study, we examined the effects of PFHxS on the proliferation of Hep3B (human hepatocellular carcinoma) and SK-Hep1 (human liver sinusoidal endothelial cells). Cells were exposed to different PFHxS concentrations for 24–48 h to assess viability and 12–14 days to measure colony formation. The viability of both cell lines increased at PFHxS concentrations <200 μM, decreased at >400 μM, and was highest at 50 μM. Colony formation increased at <300 μM and decreased at 500 μM PFHxS. Consistent with the effect on cell proliferation, PFHxS increased the expression of proliferating cell nuclear antigen (PCNA) and cell-cycle molecules (CDK2, CDK4, cyclin E, and cyclin D1). In summary, PFHxS exhibited a biphasic effect on liver cell proliferation, promoting survival and proliferation at lower concentrations and being cytotoxic at higher concentrations. This suggests that PFHxS, especially at lower concentrations, might be associated with HCC development and progression.

Funder

Research Institute of Medical Science, Daegu Catholic University

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3