Toxicity of Tetracycline and Metronidazole in Chlorella pyrenoidosa

Author:

Li Junrong1,Wang Yingjun1,Fan Ziqi2,Tang Panyang1,Wu Mengting1,Xiao Hong1,Zeng Zhenxing1

Affiliation:

1. Department of Environmental Engineering, College of Environment, Sichuan Agricultural University, Chengdu 611100, China

2. Sichuan SEP Analytical Services Co., Ltd., Chengdu 610000, China

Abstract

Antibiotics have become a new kind of organic pollutant as they are widely used in the water environment of China. Tetracycline (TC) is a class of broad-spectrum antibiotics produced or semi-synthesized by actinomycetes. Metronidazole (MTZ) is the first generation of typical nitroimidazoles. The content of nitroimidazoles is relatively high in medical wastewater, and their ecotoxicity is worthy of attention because they are difficult to completely eliminate. In this paper, the effects of TC and MTZ on the growth, cell morphology, extracellular polymer and oxidative stress of Chlorella pyrenoidosa (C. pyrenoidosa) were studied, and the toxic interactions between TC and MTZ mixture components were analyzed. The results showed that the 96h-EC50 of TC and MTZ was 8.72 mg/L and 45.125 mg/L, respectively. The toxicity of TC to C. pyrenoidosa was higher than that of MTZ, and the combined toxicity effect of TC and MTZ was synergistic after the combined action of a 1:1 toxicity ratio. In addition, the algal cells of C. pyrenoidosa died to varying degrees, the membrane permeability of algal cells was increased, the membrane was damaged, the surface of algal cells exposed to higher concentration of pollutants was wrinkled, and their morphology was changed. The extracellular polymer of C. pyrenoidosa was affected by a change in concentration. The effect of pollutants on the reactive oxygen species (ROS) level and malondialdehyde (MDA) content of C. pyrenoidosa also had an obvious dose–effect relationship. This study contributes to the assessment of the possible ecological risks to green algae due to the presence of TC and MTZ in aquatic environments.

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3