Toxicity Rank Order (TRO) As a New Approach for Toxicity Prediction by QSAR Models

Author:

Chen Yuting,Dong Yuying,Li Le,Jiao Jian,Liu Sitong,Zou Xuejun

Abstract

Quantitative Structure–Activity Relationship (QSAR) models are commonly used for risk assessment of emerging contaminants. The objective of this study was to use a toxicity rank order (TRO) as an integrating parameter to improve the toxicity prediction by QSAR models. TRO for each contaminant was calculated from collected toxicity data including acute toxicity concentration and no observed effect concentration. TRO values associated with toxicity mechanisms were used to classify pollutants into three modes of action consisting of narcosis, transition and reactivity. The selection principle of parameters for QSAR models was established and verified. It showed a reasonable prediction of toxicities caused by organophosphates and benzene derivatives, especially. Compared with traditional procedures, incorporating TRO showed an improved correlation coefficient of QSAR models by approximately 10%. Our study indicated that the proposed procedure can be used for screening modeling parameter data and improve the toxicity prediction by QSAR models, and this could facilitate prediction and evaluation of environmental contaminant toxicity.

Funder

Education Department of Liaoning Province for Basic Scientific Research Key Project

Natural Science Foundation OF China

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3