Spatial-Temporal Variations in of Soil Conservation Service and Its Influencing Factors under the Background of Ecological Engineering in the Taihang Mountain Area, China

Author:

Wang Feng12ORCID,Liu Jintong1,Fu Tonggang1,Gao Hui1,Qi Fei12

Affiliation:

1. Key Laboratory of Agricultural Water Resources, Hebei Laboratory of Agricultural Water-Saving, Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 286 Huaizhong Road, Shijiazhuang 050021, China

2. University of Chinese Academy of Sciences, Beijing 100049, China

Abstract

Soil conservation (SC) plays an important role in maintaining regional land productivity and sustainable development. Ecological engineering (EE) is being implemented in different countries to effectively alleviate the damage to the ecological environment and effectively protect soil and food security. It is important to determine whether or not the SC capacity becomes stronger after the implementation of EE and whether or not EE has a notable impact on SC in different altitude zones. The exploration of the influencing mechanism and identification of the dominate influencing factors in different geographical regions needs to be improved. In this study, the soil conservation services (SCSs) from 1980 to 2020 in the Taihang Mountain area was assessed using the integrated valuation of ecosystem services and trade-offs (InVEST) model, and the spatial and temporal distributions and influencing factors were explored. The results showed the following: (1) the average SCSs exhibited an increasing trend from 1980 to 2020 on the whole, and the rate of increase reached 50.53% during the 41-year period. The rate of increase of the SCSs varied in the different EE implementation regions, and it was significantly higher than that of the entire study area. (2) The spatial distribution of the SCSs was highly heterogeneous, and the high SCS value areas were coincident with the high-altitude areas where forest and grassland occupied a large proportion. The low value areas were mainly located in the hilly zone or some of the basin regions where the proportion of construction land was relatively high. (3) The distribution pattern of the SCSs was the result of multiple factors. The EE intensity had the strongest explanatory power for the SCSs in the hilly zone, explaining 34.63%. The slope was the most critical factor affecting the SCSs in the mid-mountain and sub-alpine zones. The slope and normalized difference vegetation index (NDVI) had the greatest interactions with the other factors in the three altitude zones, especially in the high-altitude regions. The quantitative analysis of the SCSs and the influences of EE and natural factors on the SCSs revealed the heterogeneity in the mountainous areas. These results also provide a scientific basis for the reasonable implementation of EE and sustainable management of SCSs in the Taihang Mountain area.

Funder

Key Program of the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Reference70 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3