Review of Published Laboratory-Based Aerosol Sampler Efficiency, Performance and Comparison Studies (1994–2021)

Author:

Hanlon James,Galea Karen S.ORCID,Verpaele StevenORCID

Abstract

We provide a narrative review on the published peer-reviewed scientific literature reporting sampler efficiency, performance and comparison studies (where two or more samplers have been assessed) in laboratory settings published between 1994 and 2021 (27 year period). This review is a follow-up to our narrative review on the published peer-reviewed scientific literature reporting sampler comparison in workplace settings. Search terms were developed for Web of Science and PubMed bibliographic databases. The retrieved articles were then screened for relevance, with those studies meeting the inclusion criteria being taken forward to data extraction (25 studies). The most common fraction assessed has been the inhalable fraction, with the IOM sampler being the most studied inhalable sampler and the SKC Aluminium cyclone being the most studied respirable sampler from the identified relevant articles. The most common aerosol used has been aluminium oxide. It was evident that standardisation for these sampler performance experiments is lacking. It was not possible to identify any discernible trends for the performance of samplers when assessed with different aerosols. The need for more detailed and informative data sharing from authors is highlighted. This includes provision of clear identifiable information on the samplers used for testing, sampler flow rates (both manufacturer and those actually used in the study, with an explanation given of any differences), detailed information on the test aerosols used and the sampler substrate materials used. An identified gap in the literature is the potential to perform studies aimed at revaluating the performance of samplers to allow any longer-term temporal changes in performance to be assessed. One approach in advancing the field is to produce an updated protocol for the laboratory testing of samplers. This updated protocol would be beneficial for both the research and occupational hygiene community and would allow harmonised assessment and reporting of sampler comparison studies.

Funder

Nickel Institute

International Copper Association

Cobalt Institute

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Reference55 articles.

1. Application of recent advances in aerosol sampling science towards the development of improved sampling devices: The way ahead;Vincent;J. Environ. Monit.,1999

2. (1992). Air Quality—Particle Size Fraction Definitions for Health-Related Sampling (Standard No. ISO 7708).

3. (1993). Workplace Atmospheres: Size Fraction Definitions for Measurement of Airborne Particles (Standard No. BS EN 481:1993).

4. (1995). Air Quality—Particle Size Fractions Definitions for the Health-Related Sampling (Standard No. ISO 7708:1995).

5. (1997). Workplace Atmospheres-Assessment of Performance of Instruments for Measurement of Airborne Particle Concentrations (Standard No. TC136/WG3/N192).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3