Radon Solubility in Different Tissues after Short Term Exposure

Author:

Hinrichs Annika,Schmitt Michaela,Papenfuß Franziska,Roth Mirjam,Fournier Claudia,Kraft Gerhard,Maier AndreasORCID

Abstract

Radon, a naturally occurring radioactive noble gas, contributes significantly to lung cancer when incorporated from our natural environment. However, despite having unknown underlying mechanisms, radon is also used for therapeutic purposes to treat inflammatory diseases such as rheumatoid arthritis. Data on the distribution and accumulation of radon in different tissues represent an important factor in dose determination for risk estimation, the explanation of potential therapeutic effects and the calculation of doses to different tissues using biokinetic dosimetry models. In this paper, radon’s solubility in bones, muscle tissue, adipose tissue, bone marrow, blood, a dissolved gelatin and oleic acid were determined. In analogy to current radon use in therapies, samples were exposed to radon gas for 1 h using two exposure protocols combined with established γ-spectroscopic measurements. Solubility data varied over two orders of magnitude, with the lowest values from the dissolved gelatin and muscle tissue; radon’s solubility in flat bones, blood and adipose tissue was one order of magnitude higher. The highest values for radon solubility were measured in bone marrow and oleic acid. The data for long bones as well as bone marrow varied significantly. The radon solubility in the blood suggested a radon distribution within the body that occurred via blood flow, reaching organs and tissues that were not in direct contact with radon gas during therapy. Tissues with similar compositions were expected to reveal similar radon solubilities; however, yellow bone marrow and adipose tissue showed differences in solubility even though their chemical composition is nearly the same—indicating that interactions on the microscopic scale between radon and the solvent might be important. We found high solubility in bone marrow—where sensitive hematopoietic cells are located—and in adipose tissue, where the biological impact needs to be further elucidated.

Funder

Bundesministerium für Bildung und Forschung

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3