Ecological Flow Response Analysis to a Typical Strong Hydrological Alteration River in China

Author:

Xia Rui123,Sun Hao14,Chen Yan56,Wang Qiang1,Chen Xiaofei1,Hu Qiang1,Wang Jing1

Affiliation:

1. State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China

2. Laboratory of Aquatic Ecological Conservation and Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China

3. State Environmental Protection Key Laboratory of Estuarine and Coastal Research, Chinese Research Academy of Environmental Sciences, Beijing 100012, China

4. College of Urban and Environmental Sciences, Northwest University, Xi’an 710127, China

5. Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China

6. University of Chinese Academy of Sciences, Beijing 100049, China

Abstract

Ecological flow is an important indicator for reflecting the stability of a watershed ecosystem. The calculation of ecological discharge under hydrological variation has become a research hot-spot. The Ganjiang River south of Poyang Lake in China was taken as an example in this study. Hydrological Alteration Diagnosis System methods were used to detect the change-points. The Distributed Time Variation Gain Model (DTVGM) was used to carry out runoff restoration. The Probability-weighted Flow Duration Curve was applied to calculate the ecological flow. The results showed that: (1) The hydrological alteration of the Waizhou Station occurred in 1991, the annual runoff increased by 10%, and the Gini coefficient (GI) increased by 0.07 after the change-point. The change in precipitation was the main driving factors. (2) The R value and NSE of the DTVGM were greater than 0.84, which represents the feasibility of the model used to restore runoff. (3) Compared to the traditional hydrological method, the proposed method can better reflect the inter-annual difference of ecological flow, flow ranges for high, normal, and low flow years are 398–3771 m3/s, 352–2160 m3/s, and 277–1657 m3/s, respectively. The calculation method of ecological flow in rivers considering hydrological variation can more scientifically reflect the impact of hydrological variation on ecological flow process, ecological flow under different human activities that can be calculated, such as dam control, water intake and water transfer, furthermore, it also provides a scientific basis for water resources planning and allocation under changing environment.

Funder

Strategic Priority Research Program of the Chinese Academy of Sciences

National Key R&D Program of China

National Natural Science Foundation of China

Fundamental Research Funds for the Central Public-interest Scientific Institution

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3