Facet Dependence of Biosynthesis of Vivianite from Iron Oxides by Geobacter sulfurreducens

Author:

Luo Xiaoshan1,Wen Liumei1,Zhou Lihua2,Yuan Yong1

Affiliation:

1. Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China

2. Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China

Abstract

Vivianite plays an important role in alleviating the phosphorus crisis and phosphorus pollution. The dissimilatory iron reduction has been found to trigger the biosynthesis of vivianite in soil environments, but the mechanism behind this remains largely unexplored. Herein, by regulating the crystal surfaces of iron oxides, we explored the influence of different crystal surface structures on the synthesis of vivianite driven by microbial dissimilatory iron reduction. The results showed that different crystal faces significantly affect the reduction and dissolution of iron oxides by microorganisms and the subsequent formation of vivianite. In general, goethite is more easily reduced by Geobacter sulfurreducens than hematite. Compared with Hem_{100} and Goe_L{110}, Hem_{001} and Goe_H{110} have higher initial reduction rates (approximately 2.25 and 1.5 times, respectively) and final Fe(II) content (approximately 1.56 and 1.20 times, respectively). In addition, in the presence of sufficient PO43−, Fe(II) combined to produce phosphorus crystal products. The final phosphorus recoveries of Hem_{001} and Goe_H{110} systems were about 5.2 and 13.6%, which were 1.3 and 1.6 times of those of Hem_{100} and Goe_L{110}, respectively. Material characterization analyses indicated that these phosphorous crystal products are vivianite and that different iron oxide crystal surfaces significantly affected the size of the vivianite crystals. This study demonstrates that different crystal faces can affect the biological reduction dissolution of iron oxides and the secondary biological mineralization process driven by dissimilatory iron reduction.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3