Efficient Removal of Heavy Metals from Contaminated Sunflower Straw by an Acid-Assisted Hydrothermal Process

Author:

Song Huijuan,Zhou Jun,He Shilong,Ma Qiao,Peng Liang,Yin Miaogen,Lin Hui,Zeng Qingru

Abstract

The removal of heavy metals is crucial to the utilization of contaminated biomass resources. In this study, we report an efficient process of hydrothermal conversion (HTC) of sunflower straw (Helianthus annuus L.) to remove heavy metals. The effect of different HTC temperatures and concentrations of HCl additives on heavy metal removal efficiency was investigated. The results revealed that increasing the temperature or concentration of HCl promoted the transfer of heavy metals from hydrochar to liquid products during HTC. The heavy metals removed to the liquid products included up to 99% of Zn and Cd, 94% of Cu, and 87% of Pb after hydrothermal conversion with a temperature of 200 °C and HCl 2%. The species of heavy metals in hydrochars converted from unstable to stable with an increase in temperature from 160 °C to 280 °C. The stable fractions of heavy metals in the acidic condition decreased as the acid concentration increased. This aligns well with the high transfer efficiency of heavy metals from the solid phase to the liquid phase under acidic conditions. The FTIR indicated that the carboxy and hydroxy groups decreased significantly as the temperature increased and the concentration of HCl increased, which promoted the degradation of sunflower straw. A scan electron microscope showed that the deepening of the destruction of the initial microstructure promotes the transfer of heavy metals from hydrochars to liquid phase products. This acid-assisted hydrothermal process is an efficient method to treat biomass containing heavy metals.

Funder

National Natural Science Joint Fund

Technology Innovation Leading Plan (Science and Technology Tackling) of Hunan Province

Hunan Education Department Projects

Hunan Provincial Youth Backbone Teacher Plan

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3