Pill Box Text Identification Using DBNet-CRNN

Author:

Xiang Liuqing1,Wen Hanyun1,Zhao Ming1ORCID

Affiliation:

1. School of Computer Science, Yangtze University, Jingzhou 434025, China

Abstract

The recognition process of natural scenes is complicated at present, and images themselves may be complex owing to the special features of natural scenes. In this study, we use the detection and recognition of pill box text as an application scenario and design a deep-learning-based text detection algorithm for such natural scenes. We propose an end-to-end graphical text detection and recognition model and implement a detection system based on the B/S research application for pill box recognition, which uses DBNet as the text detection framework and a convolutional recurrent neural network (CRNN) as the text recognition framework. No prior image preprocessing is required in the detection and recognition processes. The recognition result from the back-end is returned to the front-end display. Compared with traditional methods, this recognition process reduces the complexity of preprocessing prior to image detection and improves the simplicity of the model application. Experiments on the detection and recognition of 100 pill boxes demonstrate that the proposed method achieves better accuracy in text localization and recognition results than the previous CTPN + CRNN method. The proposed method is significantly more accurate and easier to use than the traditional approach in terms of both training and recognition processes.

Funder

New Generation Information Technology Innovation Project 2021

Intelligent loading system based on artificial intelligence

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Reference37 articles.

1. Chao, Z. (2016). Research on Text Location and Recognition in Natural Scenes of Image, University of Science and Technology of China.

2. A review of natural scene text detection and recognition based on deep learning;Wang;J. Softw.,2020

3. Review of image segmentation methods;Guojun;J. Hebei Eng. Tech. Coll.,2009

4. An improved image segmentation method based on fuzzy clustering;Huajun;J. Image Graph.,2006

5. On applying spatial constraints in fuzzy image clustering using a fuzzy rule based system;Tolias;IEEE Signal Process. Lett.,1998

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3