Literature Review on Power Battery Echelon Reuse and Recycling from a Circular Economy Perspective

Author:

Nie Yongyou1,Wang Yuhan1,Li Lu2,Liao Haolan1ORCID

Affiliation:

1. School of Economics, Shanghai University, 99 Shangda Road, Baoshan District, Shanghai 200444, China

2. College of Environmental Science Engineering, Hunan University, Changsha 410082, China

Abstract

Developing new energy vehicles (NEVs) is necessary to grow the low-carbon vehicle industry. Many concentrated end-of-life (EoL) power batteries will cause large-scale environmental pollution and safety accidents when the time comes to replace the first generation of batteries if improper recycling and disposal methods are utilized. Significant negative externalities will result for the environment and other economic entities. When recycling EoL power batteries, some countries need to solve problems about lower recycling rates, unclear division of echelon utilization scenarios, and incomplete recycling systems. Therefore, this paper first analyzes representative countries’ power battery recycling policies and finds out the reasons for the low recycling rate in some countries. It is also found that echelon utilization is the critical link to EoL power battery recycling. Secondly, this paper summarizes the existing recycling models and systems to form a complete closed-loop recycling process from the two stages of consumer recycling and corporate disposal of batteries. The policies and recycling technologies are highly concerned with echelon utilization, but few studies focus on analyzing application scenarios of echelon utilization. Therefore, this paper combines cases to delineate the echelon utilization scenarios clearly. Based on this, the 4R EoL power battery recycling system is proposed, which improves the existing recycling system and can recycle EoL power batteries efficiently. Finally, this paper analyzes the existing policy problems and existing technical challenges. Based on the actual situation and future development trends, we propose development suggestions from the government, enterprises, and consumers to achieve the maximum reused of EoL power batteries.

Funder

Shanghai Science and Technology Planning Project

MOE (Ministry of Education in China) Planning Project of Humanities and Social Sciences

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3